Code: EC3T2

II B.Tech - I Semester – Regular Examinations – December 2015

PROBABILITY THEORY AND STOCHASTIC PROCESS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Find the total number of non-empty events of a sample space, when a fair die is rolled.
 - b) What is the probability of getting a red colored king card, when a card is drawn at random from a well-shuffled deck of 52 playing cards.
 - c) If X is a random variable then find

i)
$$P\{X=-\infty\}$$
 ii) $P\{X=\infty\}$.

- d) Find the mean of a random variable X if $f_X(x) = u(x)e^{-x}$ where u(.) is a unit step function.
- e) Write any four properties of Joint Distribution function.
- f) Find the value of k so that

$$f(x,y) = \begin{cases} k e^{-x} \sin y, & 0 \le x < \infty \text{ and } 0 \le y \le \frac{\pi}{2} \\ 0, & \text{elesewhere} \end{cases}$$

is a valid joint density function.

- g) Find E[XY], if X,Y are statistically independent random variables with $\overline{X} = 2$ and $\overline{Y} = 3$
- h) Define stationary random process.
- i) Write any four properties of Power Density Spectrum.
- j) Define Band-Limited Processes
- k) Define Average Noise Figure.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Define Total probability and state Baye's theorem. 4 M
 - b) Explain when we say that three events are statistically independent?

 4 M
 - c) A missile can be launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.02 and 0.04, respectively. It is also known that B is more likely to fail (probability 0.07) if A has failed.
 - i) What is the probability of an accidental missile launch?
 - ii) What is the probability that A will fail if B has failed?
 - iii) Are the events "A fails" and "B fails" statistically independent?
- 3. a) Write any four properties of Density function $f_X(x)$

4 M

- b) Assume that the height of trees above the ground at some location is a gaussian random variable X with mean, $\mu = 5$ ft. and standard deviation, $\sigma = 1$ ft. Find the probability that the trees will be higher than 6 ft. 4 M
- c) Find the value of k, so that $f_X(x) = \frac{k}{3^x}$, for x = 0,1,2,3,... is a valid density function, and hence find mean, variance and standard deviation of the discrete random variable X.

8 M

- 4. a) Find a constant b (in terms of a) so that the function $f_{X,Y}(x,y) = \begin{cases} be^{-(x-y)}, \ 0 < x < a \text{ and } 0 < y < \infty \\ 0, & \text{elsewhere} \end{cases}$ is a valid joint density function and hence find an expression for the joint distribution function.
 - b) Statistically independent random variables X and Y have respective densities $f_X(x) = 5u(x)e^{-5x}$, $f_Y(y) = 2u(y)e^{-2y}$. Find the density of the sum W=X+Y.
- 5. a) If X(t) is a stationary random process having a mean value E[X(t)] = 3 and autocorrelation function $R_{XX}(\tau) = 9 + 2e^{-|\tau|}$, find i) the mean value and
 - ii) the variance of the random variable $Y = \int_{0}^{2} X(t) dt$ 8 M

- b) A random process is given by $X(t) = A_0 \cos(\omega_0 t + \Theta)$, where A_0, ω_0 are real constants, and Θ is a random variable uniformly distributed on the interval $\left(0, \frac{\pi}{2}\right)$. Find the average power P_{XX} .
- 6. a) A random process $X(t) = A\sin(\omega_0 t + \Theta)$ where A and ω_0 are real positive constants and Θ is a random variable uniformly distributed on the interval $(-\pi,\pi)$, is applied to the network having an impulse response $h(t) = Wu(t)e^{-Wt}$, where W > 0 and u(.) is a unit step function. Find an expression for the network's response process.
 - b) Explain Resistive (Thermal) Noise Source, Arbitrary Noise Sources, Effective Noise Temperature.

 8 M